APPLICATION ENGINEERING DATA

nexen.

"Air Champ"

Correction factor for operating pressures less

than 100 PSIG Use formula $t_p = C_p (t)_{100}$

 $t_n = Response time at pressure P$

RESPONSE TIME DATA For Clutches and Brakes using "Air Champ_®" Valves

All data obtained by using 8 inch long 1/4 inch diameter hose, 1/8 inch NPT fittings and quick exhaust valves.

- $t_v =$ Valve delay time
- tv = 5 msec for .062.
- 3 way valve
- tv = 8 msec for 4 way valve, pilot operated
- tv = 70 msec for 4 way valve, spring operated
- t1 = Time from start of valve open to start of torque rise
- t_2^{90} = Time from start of torque rise to 90% value of torque
- t_2^{100} = Time from start of torque rise to 100% value or torque
 - t3 = Time from start of valve exhaust to start of torgue decay
- t_4^{10} = Time from start of torgue decay to 10% valve of torque
- t_4^0 = Time from start of torque decay to 0% value of torque

Obtain CR values for units from table page 365 and 366. Read times at 100 PSIG directly from CR vs Response Time graphs below

TOROUE RISE RESPONSE

EXAMPLE: Determine the various response times defined for a 625 Modular Brake operating at 75 PSIG using a Nexen 4-way valve.

- SOLUTION: I. Determine the response times at 100 PSIG.
 - 1.) Obtain the response factor, C_R, from the Clutch and
 - Brake Data Table page 365 and 366 $C_{\rm B}$ = .096.
 - 2.) Read the response times at 100 PSIG directly off the 4-way
 - C_R vs. Response Time graph; t_1 = 14 msec, $t_2{}^{90}$ = 27 msec, t_3 = 14 msec, $t_4{}^{10}$ = 34 msec, $t_4{}^0$ = 46 msec.
 - II. Correct the response times for 75 PSIG.
 - 1.) Obtain the C_n factor from the 4-way Correction Factor Graph.
 - 2.) Calculate the corrected response times using the formula $(t)_{75} = C_P (t)_{100}$
 - $(t_1)_{75} = (1.25) (14 \text{ msec}) = 17.5 \text{ msec}$

$$(t_2^{90})_{75} = (1.08) (27 \text{ msec}) = 29.2 \text{ msec}$$

likewise the following are obtained: $(t_2^{100})_{75} = 46$ msec, $(t_3)_{75} = 13.3$ msec

 $(t_4^{10})_{75} = 24$ msec, $(t_4^{0})_{75} = 36.8$ msec

80 90 100

70 80 90 100

NEXEN GROUP. INC. i.e.

FAX: (651) 286-1099